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1. Introduction

The term “magnetic susceptibility of the quark condensate”, χ(µ), was coined as early

as 1984 in a fundamental work by Ioffe and Smilga [1] on the magnetic properties of the

QCD vacuum. The denotation is due to a very intuitive picture: the value of the non-

perturbative parameter χ determines the strength of the reaction of the vacuum with

respect to an applied external electromagnetic field, analogous to what is understood by

magnetic susceptibility in solid states physics.

The magnetic susceptibility1 is an important input parameter in various calculations

of processes involving real photons, such as dijet photo-production [2], radiative decays [3]

or the anomalous magnetic moment of muons [4]. It is known that χ is in fact surprisingly

big compared to what one might assume as its “natural” scale, hence, it often provides

the dominant contribution to the calculation, see [5] for examples. Therefore, while the

determination of the magnetic susceptibility may provide additional insights into properties

of the QCD vacuum, a task worthy in its own right, a precise knowledge of the value of

χ(µ) is important for its application of QCD calculations.

Thus, various theoretical approaches to determine the magnetic susceptibility have

been suggested. To the best of our knowledge, the first work regarding this topic was

1As we only deal with one kind of “magnetic susceptibility”, we will usually drop the reference to the

quark condensate.
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published in 1983 [6] and made use of the so-called vector-dominance approximation. Oth-

ers include consistency conditions of QCD sum rule predictions [1] and local duality ap-

proaches [7, 8]. The value of χ(µ = 1GeV) = 3.15 ± 0.3 GeV−2, which is currently used

in most QCD sum rule [9] calculations was obtained by a combination of a local duality

approach and a QCD sum rule for χ [10]. However, in [11] the possibility of a larger value

is considered using a rather elegant argument similar to the famous Gell-Mann-Oakes-

Renner (GMOR) relation. An approach based on the instanton liquid model can be found

in [12 – 14].

In this work a different way to determine the value of χ is employed. We fit a χ-

dependent sum rule to an experimental value. We will argue (in section 2) that radiative

heavy meson decays and especially the D∗ → Dγ decay and the corresponding branching

ratio are suited for such a procedure. Heavy meson decays have been studied numerously

and successfully with sum-rule-based approaches, see e.g. [15]. In [16] the different D∗ →

Dγ and B∗ → Bγ decays have been examined using a light-cone sum rule approach based on

the background field method, that was advocated in [17]. While we follow the general spirit

of this calculation, we use a more recent complete set of photon distribution amplitudes up

to twist 4 [10], including some small contributions that where neglected in [16]. We will also

make use of a recently published update on some non-perturbative parameters [18]. As a

detailed calculation of the various D∗ → Dπ decays was presented in [19] and the D∗ decays

only into Dπ and Dγ, we are able to determine the χ-dependence of the corresponding

branching ratios up to and including twist 4.

The paper is organized as follows. In section 2 we will calculate the D∗+ → D∗+γ

decay constant gD∗Dγ using LCSRs. The next section deals with the branching ratios and

how to extract the value of χ. Section 4 contains the conclusions.

2. LCSRs for the D∗
→ Dγ decay

As already mentioned in the introduction, if one wants to find χ by fitting a sum rule to

experiment, it is important to select a process the exhibits a strong dependence on χ. This

unfortunately rules out some well known classical problems like the magnetic moments of

nucleons, as sum rule calculations [5] show large contributions due to higher twist terms,

most notably twist 4, and only a moderate dependence on χ. A suitable process should

thus fulfill several conditions:

• in order to archive a better suppression of higher twist terms it is advantageous

to consider processes that involve a propagating heavy quark, which will induce a
1

mq
-suppression of twist-4 contributions

• existing experimental data should be accurate enough to support a fit

• the relevant sum rule should not contain any theoretical difficulties, e.g. sum rules for

transition between states of different mass are known to require an adjustment of the

Borel parameters to allow for the mass gap, which would possibly entail additional

uncertainties.
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Figure 1: Radiative decays of a D∗ with momentum p into a D with momentum p + q.

This does not single out any particular process, however our choice, the D∗ → Dγ decay,

seems to fulfill the criteria rather well.2 It is also advantageous that the decay D∗ → Dπ has

been analyzed using LCSRs [19], thus allowing us to consider sum rules for the branching

ratios, which have been measured rather precisely [20].

In the remainder of this section we will examine the D∗ → Dγ transition. In ref. [16]

this was already calculated using LCSRs in conjunction with photon distribution ampli-

tudes. Our calculation will use, for the first time, a complete set of twist 4 DAs and

updated parameters. As the only difference between the D∗0 and the D∗+ is the charge of

the light quark, we will focus on the case of the D+.3

2.1 Definitions

The transition matrix element

〈D∗(p, λ)| jµ
em(0) |D(p + q)〉 = εµναβpνǫ(λ)αqβgD∗Dγ(Q2) (2.1)

can be parametrized by introducing the transition amplitude gD∗Dγ . Here ǫ(λ)β is the 4-

polarization vector of the D∗. The decay width only depends on gD∗Dγ(0), therefore, we

only have to take real photons into account. Henceforth, e
(λ)
µ is the four-polarization vector

of the emitted photon, q · e(λ) = 0.

The decay as shown in figure 1 can conveniently be described by the correlation function

Πµν (p, q) = i2
∫

d4x

∫
d4y eipx+iqy 〈0| T {ηµ

D∗(x) jν (y) ηD(0)} |0〉 . (2.2)

Here

jµ = eddγµd + eccγµc (2.3)

2In fact, at first glance the decay B∗
→ Bγ is even more appealing. Unfortunately the B∗ is too heavy

to be produced in B-factories running at the Υ(4s) resonance. Furthermore, due to kinematics the process

B∗
→ Bπ is only possible as a virtual subprocess, therefore the branching ratio is not a good observable

for our purpose.
3To avoid unnecessary indices, we will usually abstain from using the +.
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is the electromagnetic current, with ed = −1/3 and ec = 2/3 being the quark charges. The

currents [17]

ηµ
D∗(x) = ua(x)γµca(x) (2.4)

ηµ
D∗(x) = ub(x)iγ5c

b(x) (2.5)

are used to generate a state with the quantum numbers of a D∗ or a D meson, respectively.

a, b are color indices. The coupling constants fD∗ and fD of the currents (2.4) and (2.5)

to the corresponding states are defined as [17]

〈0| ηµ
D∗(0) |D

∗(λ, p)〉 = mD∗fD∗ǫ(λ)µ (2.6)

〈0| ηD(0) |D(p)〉 =
m2

D∗

mc
fD . (2.7)

Hereafter, mD∗ and mD is the mass of the D∗ and the D. mc is the mass of the charm

quark.

It is advantageous to rewrite the correlator by introducing an electromagnetic back-

ground field of a plane wave

Fµν = i
(
e(λ)
ν qµ − e(λ)

µ qν

)
eiqx . (2.8)

This allows us to write the following correlation function

Πµν
P (p, q) e(λ)

ν = i

∫
d4x eipx 〈0| T {ηµ

D∗(x) ηD(0)} |0〉F . (2.9)

Here the subscript F indicates that the vacuum expectation value has to be evaluated in

the background field Fµν . The correlation function in eq.(2.2) can then be reproduced by

expanding eq.(2.9) in powers of the background field and taking only the terms linear in

Fµν corresponds to the single photon emission. A detailed analysis of the general procedure

can be found in ref. [10], while an excellent review on the background field method can be

found in [21].

2.2 Sum rule for gD∗Dγ

Following the general strategy of QCD sum rules, the correlation function eq.(2.2) has to be

evaluated in two different kinematic regions. On the one hand, eq.(2.9) will be dominated

by the decay D∗ → Dγ, if p2 ≈ m2
D∗ and (p + q)2 ≈ m2

D. Then again, in the kinematic

region where p2 ≪ 0 and (p + q)2 ≪ 0 an expansion in terms of photon distribution

amplitudes of increasing twist is valid.

On the hadronic level eq.(2.2) can then by written as

Πµν
P (p, q) e(λ)

ν =
fD∗fDm2

DmD∗gD∗Dγ

mc

(
m2

D∗ − p2
1

) (
m2

D − p2
2

)εµαβρpαqβe(λ)
ρ + . . . (2.10)

Where we made use of eqs. (2.1), (2.6), (2.7) and introduced the abbreviations p1 = p and

p2 = p + q. The dots represent contributions from excited states and the continuum.
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To calculate the correlation function in the deep Euclidean regime is is necessary to

insert the explicit expressions for the currents ηµ
D∗ and ηD into eq.(2.9), yielding

Πµν(p, q)e(λ)
ν = i

∫
d4xeipx 〈0| T

{
d

a
(x)γµca(x)cb(0)iγ5d

b(0)
}
|0〉F . (2.11)

As both massive and massless quarks propagate in the presents of gluonic and electromag-

netic backgroundfields the following expressions4 have to be used after employing Wick’s

theorem [22]:

d(x)d(0) =
i/x

2π2x4
−

ig

16π2x2

∫ 1

0
du {u/xσαβ + uσαβ/x}Gαβ(ux)

−
ied

16π2x2

∫ 1

0
du {u/xσαβ + uσαβ/x}Fαβ(ux) + . . . , (2.12)

and

c(x)c(0) =

∫
d4k

(2π)4i
e−ikx /k + m

m2
c − k2

− ig

∫
d4k

(2π)4i
e−ikx

∫ 1

0
du

[
/k+mc

2(m2
c − k2)2

Gµν(ux)σµν +
uxµ

m2
c−k2

Gµν(ux)γν

]

− iec

∫
d4k

(2π)4i
e−ikx

∫ 1

0
du

[
/k+mc

2(m2
c − k2)2

Fµν(ux)σµν +
uxµ

m2
c−k2

Fµν(ux)γν

]
+. . . .

(2.13)

where we used the common abbreviation u = 1 − u. Fµν(x) is the electromagnetic field

strength tensor defined in eq.(2.8) and Gµν = GA
µνtA is the gluon field strength tensor. The

dots represent terms that will not give rise to terms of twist 4 or lower.

Up to twist 4 there are only four relevant Feynman diagrams as depicted in figure 2

and their counterparts with exchanged heavy and light quarks. However, as the charm

quark condensate vanishes identically, only the perturbative “mirror diagram” has to be

considered. The calculation is then straight forward, although quite cumbersome, so that

we will just give the final results for the different diagrams.

The sum of the two perturbative diagrams is given by

T µ
a = −

Nc

4π2

∫ 1

0
dt

[
t

tecmc

tm2
c − tt(up2

1 + up2
2)

+ t
tedmc

tm2
c − tt(up2

1 + up2
2)

]
εµναβpνqαe

(λ)
β . (2.14)

For the remaining diagrams one finds:

T µ
b (p, q) =

[
ed 〈qq〉

∫ 1

0
du

(
χϕ(u)

m2
c − (up2

1 + up2
2)

−
A(u)

4

(
1

(m2
c − (up2

1 + up2
2))

2
+ 2

m2
c

(m2
c − (up2

1 + up2
2))

3

))

+edmc

∫ 1

0
du

f3γ

2(m2
c − (up2

1 + up2
2))

2
ψA(u)

]
· εµναβpνqαe

(λ)
β (2.15)

4We tacitly assume Fock-Schwinger Gauge, which allows us to omit the path-ordered exponents.
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Figure 2: Diagrams up to twist 4. The wiggled and the curled lines represent the coupling to the

electromagnetic and gluonic background fields. The double lines denote the heavy quark and the

single lines the light quark. Photon distribution amlitudes are indicated by crosses.

T µ
c (p, q) = ec 〈qq〉

[∫ 1

0
du

∫
Dα

1

(m2
c−(p+αuq)2)2

(
Sγ(α)−(1+2u)T 4

γ (α)
)
+2P

[
T 4

γ (α)
]]

·εµναβpνqαe
(λ)
β (2.16)

T µ
d (p, q) = ed 〈qq〉

[∫ 1

0
du

∫
Dα

1

(m2
c−(p+αuq)2)2

(
S(α)+(1+2u)(T3(α) − T4(α) − S̃(α))

−3T1(α)+3T2(α)

)
+2P [T1(α)−T2(α)−T3(α)+T4(α)]

]
· εµναβpνqαe

(λ)
β . (2.17)

Here
∫

Da =
∫ 1
0 dαq

∫ 1
0 dαq

∫ 1
0 dαg δ(1 − αq − αq − αg). The functions ϕ and ψA, which

are of twist 2 and twist 3, respectively, and Ti, S, S̃, Sγ , T γ
4 and A, which have twist 4, are

defined in appendix A. In order to simplify the expressions, several rather lengthy terms

have been abbreviated via the function P[x] defined in appendix B

The results for the diagrams figure 2a,b reproduce those given in [16], if one takes

into account the different nomenclature for the DAs and the different sign convention for

the electromagnetic current. The contribution T µ
d being rather small was not taken into

account in [16].

In order to obtain a sum rule for gD∗Dγ , it is necessary to equate the hadronic represen-

tation eq.(2.10) and the twist-expansion, eqs. (2.14), (2.15), (2.16), (2.17), of the correlation

function. This requires to control the contributions of excited states and of the continuum,

that can be approximately evaluated using quark-hadron duality. The standard procedure

involves a Borel transformation, which suppresses these contributions and a subsequent

continuum subtraction.

As the momentum of the photon q does not vanish in the real photon case q2 = 0, we

can treat p1 and p2 as independent, which allows a so-called double Borel transformation.

– 6 –
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This transformation can be carried out with the help of the formulas

BM2
1
BM2

2

{
Γ(α)(

m2 − up2
1 − up2

2

)α

}
= t2−αδ

(
u −

M2
1

M2
1 + M2

2

)
e−

m2

t (2.18)

and

BM2
1
BM2

2

{
1(

m2
1 − p2

1

) (
m2

2 − p2
2

)
}

= e−m2
1/M2

1−m2
2/M2

2 . (2.19)

Here M2
i is the Borel parameter corresponding to p2

i and t = M2
1 M2

2 /(M2
1 + M2

2 ). As

our final aim is a prediction for the branching ratio with help of the results from [19], the

method of how the continuum is subtracted must match the one employed therein. We will

not go into the details of the procedure but instead would like to refer to the corresponding

sections in [19] for a more detailed discussion. Furthermore, it should be noted that the

non-trivial continuum subtraction of the perturbative contribution, eq.(2.14), is elaborated

in [16, 19].

This leads to the following sum rule for gD∗Dγ :

gD∗+D+γ = −
e

M2

t

fD∗fDm2
DmD∗

[
−

mcNc

4π2

∫ S0

m2
c

ds

[
(ed−ec)

(
1−

m2
c

s

)
+ec ln

(
s

m2
c

)]
e−S0/t

+

(
e−

m2
c

t − e−
S0
t

)[
ed

f3γmc

2
φA(v) + edtχ 〈qq〉ϕ(v)

−ed
A(v)

4
〈qq〉

(
1 +

m2
c

t

)]
+ IF + IG

]
(2.20)

with

M2 =
2m2

D∗m2
D

m2
D + m2

D∗

(2.21)

S0 =
2s2

D∗s2
D

s2
D∗ + s2

D

(2.22)

v =
M2

2

M2
2 + M2

1

. (2.23)

sD and sD∗ are the continuum thresholds for the D∗ and D, respectively. The functions IF

and IG correspond to lengthy contributions of twist 4. The full expressions can be found

in appendix B. The decay width Γ(D∗+ → D+γ) is then given by the formula [23]

Γ(D∗+ → D+γ) =
g2
D∗+D+γαem

384π2

m2
D∗ − m2

D

m3
D∗

. (2.24)

The corresponding expressions for the D∗0 → D0γ decays can easily be found by replacing

ed ↔ eu in eqs. (2.20), (2.24).

– 7 –
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3. The branching ratios and the determination of χ(µ = 1GeV)

The branching ratio of the D∗+ → D+γ decay is defined as

B
(
D∗+ → D+γ

)
=

Γ(D∗+ → D+γ)

Γ(D∗+ → D+γ) + Γ(D∗+ → D+π0) + Γ(D∗+ → D0π+)
. (3.1)

In order to determine B (D∗+ → D+γ) one needs the expressions for the decay widths of

the D∗ → Dπ decays. Up to twist 4 accuracy these have been determined in [19],5 which

allows us to construct a sum rule for the branching ratio using eq.(2.20) and equations

(44), (52) and (53) from ref. [19]. A single sum rule for B (D∗+ → D+γ) has the distinct

advantage that the dependence on several parameters that effect the individual sum rules

for the widths will be significantly reduced. Most notably the dependence on the coupling

constants fD and fD∗ , which are known only up to at best 10%, will vanish completely.

It is, in principle, not possible to distentangle χ from ϕ(v). Hence, we can only make a

prediction for the product of the two.

As the mass difference mD∗−mD is very small (of the order 0.07mD∗) and can therefore

be neglected, it is possible to use symmetric Borel parameters M2
1 = M2

2 , which corresponds

to v = 1/2. In the following analysis we will use the continuum threshold S0 = 6 GeV2

as determined from the sum rules for the couplings fD and fD∗ [19], a charm quark mass

mc = 1.3 ± 0.1 GeV and the Borel window 2 GeV2 < t < 4 GeV2. The experimental value

for the branching ratio [25]

B
(
D∗+ → D+γ

)
= 1.6 ± 0.4% (3.2)

will be an additional input parameter. In figure 3 the plot of our sum rule for the branch-

ing ratio is shown using various choices for χ(µ = 1.3GeV)ϕ(1/2). It can be seen, that

branching ratio is indeed very sensitive to the value of this product. The best fit is achieved

with

[χϕ(1/2)](µ = 1.3GeV2) = 5.1
+(0.4+0.3)
−(0.7+0.3) GeV−2 . (3.3)

The first given error is due to theoretical uncertainties, the second error stems from the

experimental bounds.

The branching ratio for the D∗0 → D0γ decay

B
(
D∗0 → D0γ

)
=

Γ(D∗0 → D0γ)

Γ(D∗0 → D0γ) + Γ(D∗0 → D0π)

can be determined analogously and the corresponding plot can be found in figure 3. The

sum rule has a weaker dependence on the fit parameter compared to the previous one. It

should further be noted that the experimental uncertainties are significantly smaller. A

value of

[χϕ(1/2)](µ = 1.3GeV2) = 3.5
+(0.8+0.4)
−(0.6+0.3) GeV−2 (3.4)

5A more recent evaluation [24] also includes αs-corrections, for consistency we do not take these into

account.

– 8 –
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Figure 3: The left panel shows the plot of the branching ratio B(D∗+ → D+γ) versus the Borel

parameter t for different values for the product χ(µ)ϕ(1/2). The solid line represents the best fit

to experiment and uses χ(µ)ϕ(1/2) ≈ 5.1 GeV−2. The dashed line corresponds to χ(µ)ϕ(1/2) ≈

6.5 GeV−2 , the dashed-dotted to χ(µ)ϕ(1/2) ≈ 4.5 GeV−2. The right panel shows the plot of

the branching ratio B(D∗0 → D0γ). The best fit (solid line) yields χ(µ)ϕ(1/2) ≈ 3.5 GeV−2.

The dashed and dashed-dotted lines correspond to χ(µ)ϕ(1/2) ≈ 4.8 GeV−2 and χ(µ)ϕ(1/2) ≈

6.5 GeV−2, respectively.

produces the best agreement with experiment [25]

B
(
D∗0 → D0γ

)
= 38.1 ± 2.9% . (3.5)

The identification of the errors follows eq.(3.3). It should be noted that the result in eq.(3.4)

shows a rather strong dependence on the charm quark mass, which is one reason for the

rather large relative errors. However, this is not the case for eq.(3.3) as the sum rule for

B (D∗+ → D+γ) is almost insensitive to the c-quark mass.

In order get an expression for χ alone one has to introduce an explicit value for ϕ(1/2).

The natural choice is to use the so called asymptotic form ϕ(u) = 6uu, see discussion in [10].

Taking into account the scale dependence of the product χϕ, one gets

χ(µ = 1GeV2) = 3.5+0.5
−0.7 GeV−2 (3.6)

from the results for D∗+ → D+γ and

χ(µ = 1GeV2) = 2.4+0.9
−0.7 GeV−2, (3.7)

form D∗0 → D0γ.

For completeness, we also determine the decay widths for the different radiative D-

decays. In this case on has to use a fixed value for χ(µ = 1.3GeV)ϕ(1/2), we use 4.73 ±

0.45GeV −2, which corresponds to ϕ(1/2) = 3/2 and χ(µ = 1GeV2) = 3.15 ± 0.3GeV−2.

In this case, the coupling constants fD and fD∗ are relevant and we will use the sum rules

given in eqs.(46,47) in [19]. The results are shown in figure 4.

Γ(D∗0 → D0γ) = 20 ± 6 keV (3.8)
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Figure 4: The sum rules for the radiative D∗ decay widths using χψ(1/2) = 4.65 GeV−2.

Γ(D∗+ → D+γ) = 0.55 ± 0.3 keV (3.9)

The large uncertainties are mainly due to the uncertainties in the coupling constants

fD and fD∗ , that are not present in the sum rules for the branching ratios. A comparison

with the CLEO data [20] Γ(D∗+)total = 96 ± 26 keV would lead to a branching ratio of

≈ 0.6%, which would be below the value given in (3.2). While the experimental number

has yet to be determined more precisely, it seems to indicate that QCD sum rules generally

underestimate the decay widths in D∗ → Dγ and D∗ → Dπ, see also [24, 16, 23]. However,

the LCSR predictions for the branching ratios, that are measured more precisely then the

widths, typically agree rather well with experiment.

4. Conclusions

We have calculated the radiative decay constants of the D∗ using the approach of light-cone

sum rules. This enabled us to use results from [19] to construct a sum rule for the branching

ratios B(D∗+ → D+γ) and B(D∗0 → D0γ). As this sum rule is dominated by terms of

twist 2, that are proportional to the magnetic susceptibility of the quark consdensate χ, it

is possible to determine its numerical value by fitting the sum rule to the experimentally

determined value of the branching ratio. However, the magnetic susceptibility cannot be

accessed directly as it is ”masked” by an additional factor ϕ(1/2), and only the product of

the two can be fitted.

Taking the naive average of eq.(3.3) and eq.(3.4), the best agreement with experimental

data can be achieved by the choice

[χϕ(1/2)](µ = 1.3GeV) ≈ 4.3 ± 0.7 GeV−2. (4.1)

In order to be able to compare our result to other calculations of χ, it is necessary to

assume an explicit value for ϕ(1/2). The choice of the asymptotic wave function, which

has produced good agreement with experiment in the past, leads to

χ(µ = 1GeV) = 2.85 ± 0.5GeV−2. (4.2)
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This value is below the most recent QCD sum rule result [10] and is still affected by rather

large uncertainties, which are due to the limited precision of both sum rule parameters and

the experimental data. However, this result is very close to the one obtained in [14] using

an instanton liquid model. Alternatively, assuming the standard value χ(µ = 1 GeV) =

3.15 GeV−2 the estimate

ϕ(1/2, µ = 1 GeV) ≈ 1.35 ± 0.3 (4.3)

can be obtained. At first glance, this seems to indicate that the shape of the wave function

may be more flat compared to the asymptotic form, however, our calculation is not yet

precise enough to support such a statement.

Acknowledgments
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A. Photon distribution amplitudes

For completeness we collect the relevant photon distribution amplitudes for the D∗ → Dγ

transition according to [10]. Note that in [10] the photon momentum has the opposite sign

and the parameterization of the separation of antiquark and quark is different.

The path-ordered exponents

[x, y] = Pexp

{
i

∫
dt (x − y)µ

[
eqA

µ(tx − ty) + gBµ(tx − ty)
]}

assure gauge invariance of the matrix elements. It is important, that the electromagnetic

potential Aµ is included in addition to the gluon potentialBµ, as additional terms to those

given in [10] will occur otherwise.

A.1 Twist-2 and Twist-4 DAs

The leading-twist DA reads

〈0| q(0) [0, x] σαβq(x) |0〉F = eq 〈qq〉

∫ 1

0
du χϕ(u)Fαβ(ux) +

eq 〈qq〉

16

∫ 1

0
du x2

A(u)Fαβ(ux)

+
eq 〈qq〉

8

∫ 1

0
du B(u)xρ (xβFαρ(ux) − xαFβρ(ux)) (A.1)

with

ϕ(u) = ϕasy.(u) = 6u(1 − u) (A.2)

A(u) = 40u(1 − u)
(
3κ − κ+ + 1

)
+ 8

(
ζ+
2 − 3ζ2

)
×

[
u(1 − u) (2 + 13u(1 − u)) + 2u3

(
10 − 15u + 6u2

)
ln(u)

+2(1 − u)3
(
10 − 15(1 − u) + 61 − u2

)
ln(1 − u)

]
(A.3)
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B(u) = 40

∫ u

0
dα (u − α)

(
1 + 3κ+

) [
−

1

2
+

3

2
(2α − 1)2

]
. (A.4)

〈0| q(0)eq [0, x] Fµν(ux)q(x) |0〉F = eq 〈qq〉

∫
DαSγ(α)Fµν(αux) (A.5)

〈0| q(0)eq [0, x] σαβFµν(ux)q(x) |0〉F = (A.6)

−
eq 〈qq〉

qx

[
qαqµeλ

⊥νxβ − qβqµeλ
⊥ν − qαqνe

λ
⊥µxβ + qβqνe

λ
⊥µxα

]
T γ

4 (u, qx)

〈0| q(0) [0, ux] gGµν(ux) [ux, x] q(x) |0〉F = eq 〈qq〉

∫
DαS(α)Fµν(αux) (A.7)

〈0| q(0) [0, ux] iγ5gG̃µν(ux) [ux, x] q(x) |0〉F = eq 〈qq〉

∫
DαS̃(α)Fµν(αux) (A.8)

〈0| q(0) [0, ux] σαβgGµν(ux) [ux, x] q(x) |0〉F = (A.9)

−eq 〈qq〉
[
qαe

(λ)
⊥µg⊥βν − qβe

(λ)
⊥µg⊥αν − qαe

(λ)
⊥νg⊥βµ + qβe

(λ)
⊥νg⊥αµ

]
T1(u, qx)

−eq 〈qq〉
[
qµe

(λ)
⊥αg⊥βν − qµe

(λ)
⊥βg⊥αν − qνe

(λ)
⊥αg⊥βµ + qνe

(λ)
⊥βg⊥αµ

]
T2(u, qx)

−
eq 〈qq〉

qx

[
qαqµeλ

⊥βxν − qβqµeλ
⊥α − qαqνe

λ
⊥βxµ + qβqνe

λ
⊥αxµ

]
T3(u, qx)

−
eq 〈qq〉

qx

[
qαqµeλ

⊥νxβ − qβqµeλ
⊥ν − qαqνe

λ
⊥µxβ + qβqνe

λ
⊥µxα

]
T4(u, qx)

Here we used

∫
Dα =

∫ 1

0
dαq

∫ 1

0
dαq

∫ 1

0
dαg δ(1 − αq − αq − αg) (A.10)

αu = αq + uαg (A.11)

g⊥µν = gµν −
qµxν + qνxµ

qx
(A.12)

e⊥(λ)
µ = g⊥µν eν (λ) (A.13)

and

S(α) = 30α2
g

[ (
κ + κ+

)
(1 − αg) +

(
ζ1 + ζ+

1

)
(1 − αg) (1 − 2αg)

+ ζ2

(
3 (αq − αq)

2 − αg (1 − αg)
) ]

(A.14)

S̃(α) = − 30α2
g

[ (
κ − κ+

)
(1 − αg) +

(
ζ1 − ζ+

1

)
(1 − αg) (1 − 2αg)

+ ζ2

(
3 (αq − αq)

2 − αg (1 − αg)
) ]

(A.15)

Sγ (α) = 60α2
g (αq + αq) (4 − 7 (αq + αq)) (A.16)

Ti(u, qx) =

∫
Dα eiαuqxTi(α) (A.17)

– 12 –
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with

T1(α) = −120
(
3ζ2 + ζ+

2

)
(αq − αq)αqαqαg (A.18)

T2(α) = 30α2
g (αq − αq)

[(
κ − κ+

)
+

(
ζ1 − ζ+

1

)
(1 − 2αg) + ζ2 (3 − 4αg)

]
(A.19)

T3(α) = −120
(
3ζ2 − ζ+

2

)
(αq − αq)αqαqαg (A.20)

T4(α) = 30α2
g (αq − αq)

[(
κ + κ+

)
+

(
ζ1 + ζ+

1

)
(1 − 2αg) + ζ2 (3 − 4αg)

]
(A.21)

T γ
4 (α) = 60α2

g (αq − αq) (4 − 7 (αq + αq)) . (A.22)

The abbreviation α represents (αq, αq, αg). The values of the various constants can be

found in table 1.

It should be noted that the matrix element

〈0| q(0)eq [0, x] σαβFµν(ux)q(x) |0〉F

vanishes exactly if one sums up the whole conformal expansion. The expansion itself

has, however, non-zero coefficients and thus in next-to-leading order in conformal spin the

matrix element is different from zero. For the same reason the matrix element

〈0| q(0)eq [0, x] Fµν(ux)q(x) |0〉F

has herein mentioned form and not eq 〈qq〉Fµν(ux) .

A.2 Twist-3 DAs

〈0| q(0) [0, x] γαq(x) |0〉F = −
eq

2
f3γ

∫ 1

0
du ψ

(V )
(u)xρFρα (A.23)

〈0| q(0) [0, x] γαγ5q(x) |0〉F = −i
eq

4
f3γ

∫ 1

0
du ψ(A)(u)xρF̃ρα (A.24)

〈0| q(0) [0, ux] igγαGµν(ux) [ux, x] q(x) |0〉F = eqf3γqα

[
qνe

(λ)
⊥µ − qµe

(λ)
⊥ν

] ∫
DαV(α)eiαuqx

〈0| q(0) [0, ux] gγαγ5G̃µν(ux) [ux, x] q(x) |0〉F = eqf3γqα

[
qνe

(λ)
⊥µ − qµe

(λ)
⊥ν

] ∫
DαA(α)eiαuqx

Where

ψ
(V )

(u) = −20u(1 − u)(2u − 1) +
15

16

(
ωA

γ − 3ωV
γ

)
u(1 − u)(2u − 1)

(
7(2u − 1)2 − 3

)

ψ(A)(u) = (1 − (2u − 1)2)
(
5 (2u − 1)2 − 1

) 5

2

(
1 +

9

16
ωV

γ −
3

16
ωA

γ

)

V(α) = 540ωV
γ (αq − αq)αqαqα

2
g

A(α) = 360αqαqα
2
g

[
1 + ωA

γ

1

2
(7αg − 3)

]
. (A.25)
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χ 3.15 ± 0.3GeV−2

κ 0.15

κ+ −0.05

ζ1 0.4

ζ+
1 0

ζ2 0.3

ζ+
2 0

f3γ −(4 ± 2) · 10−3 GeV2

ωA
γ −2.1 ± 1.0

ωV
γ 3.8 ± 1.8

〈qq〉 −(240 ± 10MeV)3

Table 1: Numerical values and uncertainties of the relevant parameters [10, 18, 17] .

B. The functions P and IF , IG

In this section we have gathered the explicit expressions for the three functions P, IF and

IG that appear in eqs. (2.16), (2.17) and (2.20).

P[X(α)] = 8ec 〈qq〉

∫ 1

0
du

∫ 1

0
dαq

∫ αq

0
dα′

q

∫ 1−α′

q

0
dαqu

pqX(αq, αq, 1 − αq − αq)

m2
c − (p + (u − uαq + uαq)q)2

−

∫ 1

0
du

∫ 1

0
dαq

∫ 1−αq

0
dαq

∫ αq

0
dα′

qu
pqX(αq, α

′
q, 1 − αq − α′

q)

m2
c − (p + uαqq)2

+

∫ 1

0
du

∫ 1

0
dαq

∫ αq

0
dα′

q

∫ 1−α′

q

0
dα′

qu
pqX(α′

q, αq, 1 − α′
q − αq)

m2
c − (p + u(1 − αq)q)2

(B.1)

IF = ec 〈qq〉

∫ 1/2

0
dαq

∫ 1/2

0
dαq

1

1 − αq − αq

(
e−

m2
c

t − e−
S0
t

)
Sγ(αq, αq, 1 − αq − αq)

−ec 〈qq〉

∫ 1/2

0
dαq

∫ 1/2

0
dαq

2 − αq − 3αq

(1−αq − αq)2

(
e−

m2
c

t − e−
S0
t

)
T 4

γ (αq, αq, 1 − αq − αq)

+2ec 〈qq〉

(
e−

m2
c

t − e−
S0
t

)
m2

D − m2
D∗

t

×

{∫ 1/2

0
dαq

∫ αq

0
dα′

q

∫ 1/2

0
dαq

1/2 − αq

(1 − αq − αq)2
T 4

γ (αq, αq, 1 − αq − αq)

+

∫ 1

1/2
dαq

∫ 1/2

0
dα′

q

∫ 1−αq

1/2
dαq

1/2 − αq

(1 − αq − αq)2
T 4

γ (αq, αq, 1 − αq − αq)

−

∫ 1/2

0
dαq

∫ 1−αq

0
dαq

1

2α2
q

∫ αq

0
dα′

qT
4

γ (αq, α
′
q, 1 − αq − α′

q)

+

∫ 1/2

0
dαq

1

2(1 − αq)2

∫ αq

0
dα′

q

∫ 1−α′

q

0
dαqT

4
γ (α′

q, αq, 1 − α′
q − αq)

}
(B.2)
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IG = eq 〈qq〉

∫ 1/2

0
dαq

∫ 1/2

0
dαq

(
e−

m2
c

t −e−
S0
t

)[
1

1−αq−αq
S+

2−3αq−αq

(1−αq−αq)2
(T3−T4)

−
3

1−αq−αq
(T1−T2)−

αq−αq

(1−αq−αq)2
S̃

]
(αq, αq, 1−αq−αq)

+2eq 〈qq〉

(
e−

m2
c

t −e−
S0
t

)
m2

D−m2
D∗

t

×

{∫ 1/2

0
dαq

∫ αq

0
dα′

q

∫ 1/2

0
dαq

1/2−αq

(1−αq−αq)2
[T1−T2−T3 + T4] (αq, αq, 1−αq−αq)

+

∫ 1

1/2
dαq

∫ 1/2

0
dα′

q

∫ 1−αq

1/2
dαq

1/2−αq

(1−αq−αq)2
[T1−T2−T3 + T4] (αq, αq, 1−αq−αq)

−

∫ 1/2

0
dαq

∫ 1−αq

0
dαq

1

2α2
q

∫ αq

0
dα′

q [T1−T2−T3 + T4] (αq, α
′
q, 1−αq−α′

q)

+

∫ 1/2

0
dαq

1

2(1−αq)2

∫ αq

0
dα′

q

∫ 1−α′

q

0
dαq [T1−T2−T3 + T4] (α

′
q, αq, 1−α′

q−αq)

}

(B.3)
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